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Abstract

The electromagnetic and thermal ®elds for some types of electromechanical converters under steady-periodic state
regime have been determined analytically. The magnetic potential and temperature ®eld equations, in terms of

cylindrical coordinates have been solved for the steady-periodic state work-load case. The magnetic as well as the
thermal parameters of the converters considered are linear and indicate the anisotropic features. # 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

When running, the various parts of an electromech-

anical converter (that is an electrical machine) will

exhibit temperature rises due to the ¯ow of stator and

rotor currents. The problem of determining what these

rises are likely to be, in practice, is very di�cult, but

nevertheless, very important both for machine con-

structors and their end users. The experimental

approach, i.e. the direct determination of the tempera-

ture rises, is hampered by the great variation in size of

typical electrical machines with solid rotors. Thus, on

the one hand, one has the huge power-station gener-

ators whilst on the other, one has the small to tiny

asynchronous machines which are used in actuators or

in positioning systems. This makes a theoretical

approach attractive even though this involves the esti-

mation of the spatial variation of both the electromag-

netic and the temperature ®elds. This paper presents

analytical analyses for two important cases:

1. synchronous 3-phase generators with cylindrically

shaped solid rotors operating under asynchronous

working conditions;

2. 2-phase asynchronous machines operating under

nominal work conditions.

The industrial production methods for the rotors of

these machines involve layered structures which necess-

arily involve anisotropy for both the electromagnetic

and the thermal parameters. The usual way of investi-

gating such anisotropic systems is to use numerical

methods such as FEM, BEM [2,9] but it is also poss-

ible, without too much di�culty, to use purely analytic

approaches as well [2]. These analytical methods have

the great advantage that one can readily and quickly

investigate the e�ects of changes of geometry and/or

material properties and thus plot graphs etc without

needing resource to expensive computer time.

Particular examples of important machine parameters

whose in¯uence can be studied analytically include

magnetic permittivity, speci®c heat, convection coef-

®cient etc. Another great merit of the analytical

approach is that it provides a way of checking the
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Nomenclature

a conducting layer width
aa, ba, ad, bd constants for solutions of di�erential equations for magnetic ®eld
ay, by constants for solutions of di�erential equations for temperature
~A the magnetic vector potential; it de®nes both electric and magnetic ®eld [4] as

follows, ~E=ÿA4 , ~B=curl( ~A)
A(r ) matrix of set di�erential equation

Br, Ba magnetic ¯ux density components, Br � @A=r@a, Ba � ÿ@A=@r,
Bi=afR/lrr Biot number
cp speci®c heat

c1, c2 constants for temperature W(r )
Co, C(r ) denote constant and function for solutions of Bessel's equation
~E electric ®eld strength, ~E=ÿA4
f frequency of rotor currents

fs frequency of stator currents
g the gap width
i � �������ÿ1p

imaginary unit
~{r, ~{a, ~k radial, tangential and axial unit vectors, respectively
~j=g ~E current density
I1�r�, I2�r� auxiliary integrals

IpB(br ), KpB(br ) modi®ed Bessel's functions
k�r� � �k2 � p2Tr

ÿ2� parameter of Bessel's equation
p the pole pair number

Dp�r, x� local power losses volume density
pB, pT orders of Bessel's functions pB � p

����
nrr
p
naa , pT � p

�����
laa
p
lrr

P, Q auxiliary constants
P�r�, DP�r� power losses density

P(r ) auxiliary vector
r radius or the radial coordinate
R outer radius of the layer

R�r�, S�a, t� functions separated
S�, Sÿ � S constants of S�a, t�
s � io imaginary angular speed

T�r, a, t� temperature
Tf ¯uid temperature in the gap
U,W auxiliary constants
W(r ) Wronsky's matrix

x � o tÿ pa angular-time variable
X(r ) vector of temperature and its radial derivative
Z�br� � aaIpB�br� � baKpB�br� auxiliary function for current density

Greek symbols
a angular coordinate
af convection coe�cient
b � �����������

sgnÿ1aa

p
skin e�ect parameter

g electric conductivity of the rotor layer
Eo dielectric permittivity for the vacuum
W, y temperature components

yr, ys rotor and stator mmfs k �
����������������������
2iorcplÿ1rr

q
laa, lrr thermal conductivities
no, nrr, naa magnetic reluctivity for the air-gap and the rotor layer, respectively

r mass density
os=2pfs/p angular stator speed
o=2pf/p=osÿOm rotor current angular speed

Om rotor mechanical speed
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quality of the numerical solutions. It should also be
pointed out that the experimental approach, which at

®rst sight might be thought to be preferable, can be
very expensive and time consuming yet still not give
trustworthy results mainly due to the lack of accurate

values for the material parameters. Numerical sol-
utions would therefore be needed over a wide-range of
these parameters in order for a design engineer to be

sure that the machine will perform to speci®cation
under all likely operational conditions. Analytical sol-
utions can therefore be very attractive.

2. A model electromechanical converter

The model investigated is constructed with the fol-
lowing assumptions. The symmetry is assumed to be
axially-symmetric i.e. cylindrical so that both ®elds can

be speci®ed using simple polar coordinates in the plane
perpendicular to the axis. The material properties are
assumed to have the normal (diagonal) anisotropy [7]
and these properties are assumed to be linear. Three

distinct regions are considered; the gap, the anisotropic
layer and the ferromagnetic rotor core. The air-gap
electromagnetic parameters are like for the vacuum.

The medium temperature Tf in the air-gap is known as
well as the convection coe�cient af between the air-
gap and the outer surface of the rotor. The conducting

layer presents the diagonal anisotropy of magnetic and
thermal parameters. The rotor inner part of electro-
mechanical converter (the so-called coreÐthe black
one in Fig. 1) has the zero magnetic reluctivity. The

core and the anisotropic layer are insulated from each
other for not conducting both the electric current and
heat ¯ux. The currents led in stator winding are dis-

tributed along the periphery of the machine having the
so-called p-pole symmetry. The cross-section of electro-
mechanical converter is shown in Fig. 1.

The parameters for all regions are grouped in Table 1.
The solution of electromagnetic ®eld equation has

been received considering the stator and rotor currents

values. The currents and the boundary conditions for

magnetic ®eld components result from the magnetic
®eld distribution. The total magnetic ®eld, which

appears in conducting rotor, forces the spatial distri-
bution of rotor eddy currents. According to Joule's
principle the power losses volume density have been
evaluated. The heat transfer equation and boundary

conditions for heat ¯ux constitute the analytical sol-
ution for temperature ®eld distribution. The distri-
bution of temperature and heat ¯ux is known if all

constant of solutions would be calculated due to values
assumed of the mmf and the material parameters.

3. Electromagnetic ®eld

The determination of the electromagnetic ®eld is car-
ried out under the following assumptions:

. 2-D analysis (@/@z=0) of ®eld distribution

~H � nrr
~Br � naa ~Ba, ~E � ÿ@

~A

@ t
� ÿ ~k _A : �1�

~B � curl ~A � ~{r 1
r

@Az

@a
ÿ ~{a @Az

@ r
, �2�

. the electric displacement current is omitted,

. the 2p-pole space distribution of the mmf (the mag-

netomotive force is created by the stator windings

Table 1

Electromagnetic and thermal parameters (SI units)

Region/parameters Electromagnetic Electric Thermal The forced

�R, R� g� gap no=(1/4p ) � 107 H mÿ1 Eo=8.85 � 10ÿ12 F mÿ1 ± af , Tf

ys, p

�Rÿ a, R� layer n aa, nrr Eo, g laa Om

g Eoog
ÿ140 lrr

�0, Rÿ a� core nFe=0 ± lInsulation40 ±

Fig. 1. Exemplary electromechanical converter cross-section.
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and means the current under one pair-pole) is given
by [3]

ys�a� � ys cos�2pfst-pa� p=2� � ys

Ref exp�i�2pfstÿ pa� p=2��g:

The pair-pole number p>0 generates the variation

of currents in rotor vs angular coordinate a. Since
p=0 the currents density in cylindrical rotor
depends only on the radial coordinate r.

. there exists the normal cylindrical anisotropy of
magnetic reluctivities for rotor nrrÿ naa$0.

The Maxwell's equation [4] in the form well-known
(for the conducting region since frequency fW1017 Hz)

curl� ~H� � g ~E, �3�

leads to partial di�erential equation which governs the
magnetic vector potential distribution as follows

naa
1

r

@

@ r

�
r
@A

@r

�
� nrr

1

r2
@ 2A

@a2
� ÿg _A : �4�

The Eq. (4) is analogous to the well-known Fourier
equation. The partial time derivative under steady-per-

iodic state regime could be represented in terms of the
operand io and the complex magnetic potential as fol-
lows for the rotor

@

@ t
A�)ioA, A�t� � RefA exp�io t�g:

The observer, which is connected with the stator,
describes the magnetic potential multiplying it by the

operand eipOmt, where Om means the rotor angular
speed. The Eq. (4) can be solved by the functions sep-
aration in the well-known form

A�r, t, a� � R�r�S�t, a�: �5�

Substituting the given above relation into Eq. (4) and
separating both R and S function it can be written the
following relations8>>><>>>:
ÿ 1

S

d2S

da2
� p2

naa
nrr

r

R

d

dr

�
r
dR

dr

�
ÿ sgr2

nrr

� p2
: �6�

On the right-hand sides of both equations the square

of pair-pole number p was used for obtaining at once
the physical solutions adequate to the assumed space
distribution of mmf. For the air-gap it should be

assumed g=0, nrr=naa=no.
The ®rst relation of the set (6) has the solution given

by exponential function

S�t,a� � Sÿ exp�io tÿ ipa� � S� exp�io t� ipa�: �7�

In order to obtain the physical solution it must be
assumed (the rotating magnetic ®eld caused by the

mmf of symmetrical stator windings) S+=0.
For the region of rotor layer, the second relation of

the set (6) presents Bessel's equation of pBth order
whose solution is given by modi®ed Bessel's functions

R�r� � aaIpB�br� � baKpB�br�: �8�

If pB is not an integer number (for the anisotropic
rotor, generally) thus the modi®ed function KpB(br )
could be replaced by Bessel's function of negative

order IÿpB(br ).
For the anisotropic rotor layer (the auxiliary index a

is used, x � o tÿ pa� the magnetic ¯ux density com-

ponents are equal to

Bar � p

r
faaIpB�br� � baKpB�br�g exp�ix� �9�

Baa � ÿibfaaI
0
pB�br� � baK

0
pB�br�g exp�ix�: �10�

For the air-gap (g=0, nrr=naa=no) the relations (6)

lead to the solutions for the magnetic ¯ux density com-
ponents (this auxiliary index d is used)

Bdr � p

r
fadr p � bdr

ÿpg exp�ix� �11�

Bda � ÿpifadr pÿ1 ÿ bdr
ÿpÿ1g exp�ix�: �12�

The four constants, that appeared in Eq. (9)±(12), are
usually evaluted basing on four boundary conditions

(see Appendix, [4]). The boundary conditions given
below enable one to determine all constants which
appeared in Eq. (9)±(12). The distribution of the mag-
netic vector potential leads to the distribution of the

eddy current density j�r, x�, power losses Dp�r, x� and
the temperature, subsequently.

4. Eddy currents and power losses

Having known the distribution of the magnetic ®eld
under the steady-periodic state, the spatial distribution
of eddy current could be determined as follows

j�r, a, t� � ÿgsA�r, a, t�

� ÿgsA�x, r� � ÿgsZ�r� exp�ix�:
�13�

The magnetic vector potential is given by Eq. (9)±(12)

and henceforth they result in both electric ®eld
strength and eddy current spatial density. The values
of the eddy current losses
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Dp�r, x� � gÿ1�Ref j�r, x�g�2

� 1

2
gÿ1 Ref j�r, x�j��r, x�g � 1

2
gÿ1 Ref j�r, x�j�r, x�g,

�14a�

could be evaluated as follows

Dp�r, x� � P�r� � RefDP�r� exp�2ix�g, �14b�
where it was denoted

P�r� � 1

2
gÿ1 j j�r, 0� j2� 1

2
g j s j2 Z�br�Z ��br�

�j DP�r� j ,
�15�

DP�r� � 1

2
gÿ1j�r, 0�2 � 1

2
gs2Z 2�br�: �16�

The results of the eddy currents and local loses calcu-
lation for chosen material and geometrical parameter
values are shown in Fig. 2 (SI units system).

According to Fig. 2 it is apparent that the losses den-
sity varies with both the angular and radial co-ordi-
nate, therefore it cannot be neglected.

5. Temperature ®eld

The equation for temperature T�r, a, t� space±time

distribution has the well-known form [5]:

div�~q� � cpr _T � Dp, �17�

where the heat ¯ux is equal to

~q � ÿlrr
@T

@r
~{r ÿ laa

@T

r@a
~{a: �18�

The equations written above constitute the di�erential
equation for the temperature

lrr
1

r

@

@ r

�
r
@T

@ r

�
� laa

1

r2
@ 2T

@a2
ÿ cpr _T � ÿDp: �19�

Eq. (19)Ðaccording to its linearityÐcan be split into
two equations. On the right-hand side of the two
brand-new equations obtained only one component

either P or DP appears. The ®rst equation derived has
the written form below

lrr

1

r

@

@ r

�
r
@ �ye2xi �
@r

�
� laa

1

r2
@ 2�ye2xi �
@a2

ÿ cpr
@

@ t
�ye2xi � � ÿDPe2xi: �20�

Only the real part, thereof, has the physical meaning
(the imaginary part has no physical interpretation for

this example). The second equation derived can be
rewritten in the following form

lrr
1

r

@

@ r

�
r
@W
@ r

�
� laa

1

r2
@ 2W
@a2
ÿ cpr _W � ÿP: �21�

Both temperature functions W(r ), y(r ) must ful®l the
relation

T�r, a, t� � Refy�r�e2ixg � W�r�: �22�

Physical interpretation of both temperature functions

is rather evident. The temperature W(r ) represents the
average angular-time (x depends on t and a for p$0)
temperature component. The second component y(r )
describes the angle-time change of the physical tem-
perature. The modulus and argument of the complex
temperature y(r ) represents the magnitude and the

Fig. 2. The power losses density P and its average value Pav [W mÿ3] vs local radius r [m] for the generator.
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phase of temperature oscillations, respectively. The
angle-time variation of the temperature for the steady-

periodic state of work describes the factor exp(2ix ),
which depends on time and angular coordinate. The
complex temperature component y(r ) does not depend

on position angle and time for the steady-periodic
state of work. The solution (22) is valid for the time
points for which all transient terms of the solution had

been vanishing. The so-called steady-periodic state sol-
ution has been obtained.
The partial time derivative in Eq. (22) for the

steady-periodic could be represented as the multipli-
cation of the imaginary operand 2oi and the complex
temperature y (the real part of it means the physical
temperature) as follows:

@

@ t
y�)2o iy:

Hence, Eq. (20) takes the form of the inhomogeneous
Bessel's equation

1

r

@

@ r

�
r
@y
@r

�
ÿ
�
laa
lrr

p2

r2
� k2

�
y � ÿDP�r�

lrr

: �23�

which for DP�r� � 0 leads to the homogeneous Bessel's
equation of pTth order with the following solution [6]:

y�r� � ayIpT�kr� � byKpT�kr�: �24�

For the solid rotor a � R, the constant by must vanish
due to in®nity value of modi®ed Bessel's function
KpT(kr ) for r40, then Eq. (25) yields

y�r� � ayIpT�kr�: �25�

The second order Bessel's Eq. (23) can be written in
matrix form as follows [6]

X 0�r� � A�r�X�r� � P�r�: �26�

where it was denoted

X�r� �
�
y�r�
y 0�r�

�
, A�r� �

�
0 ÿ1
ÿk�r� rÿ1

�
,

P�r� �
�
0
ÿDP�r�lÿ1rr

�
:

�27�

The solution of Eq. (26) has the well-known form

X�r� �W�r�C, �28�

where

W�r� �
�
IPT�kr� KPT�kr�
I 0PT�kr� K 0PT�kr�

�
, C �

�
ay
by

�
: �29�

The solution of Eq. (23) (or of Eq. (26), equivalently)
can be received by the method of constant's variation

in the way ayc ay (r ) and byc by (r ). Hence, Eq. (28)
takes the form

X�r� �W�r�C�r�: �30�

Substituting the solution given above into Eq. (26) one
obtains the general solution in the form given below
[6]

X�r� �W�r�
��r

Rÿa
Wÿ1�r�P�r� dr� Co

�
, �31�

where the inverse of the Wronsky matrix W(r ) [6] in

expanded form becomes

Wÿ1�r� � det ÿ1�W�r��
�
K 0PT�kr� ÿKPT�kr�
ÿI 0PT�kr� IPT�kr�

�
,

det�W�r�� � ÿ1
r
: �32�

The temperature component Y(r ) and its radial deriva-
tive have the following ®nal form�
y�r�
y 0�r�

�
�W�r�

��
I1�r�
I2�r�

�
� Co

�
, �33�

where two auxiliary integrals have been de®ned

I1�r� � lÿ1rr

�r
Rÿa

KPT�kr�DP�r�r dr,

I2�r� � ÿlÿ1rr

�r
Rÿa

IPT�kr�DP�r�r dr

�34�

The second temperature component W=W(r ) results in
the steady-periodic state form Eq. (21)

W�r� � ÿ
�r
Rÿa

�r
Rÿa

P�r�r dr

lrrr
dr

� c1 ln

�
r

Rÿ a

�
� c2:

�35�

According to Eq. (33) and (35), the temperature
T�r, a, t� for the steady-periodic regime has the form

given below

T�r, a, t� �W�r� � Refe2xi�ayIPT�kr� � byKPT�kr�
� IPT�kr�I1�r� � KPT�kr�I2�r��g: �36�

The boundary conditions for the temperature T�r, a, t�
take the forms given below [5]:

. the continuity of the ¯ux at the boundary layerÐ
ferromagnetic core �r � Rÿ a, x 2 �0, 2p�� for the
steady-periodic state of work is described by the fol-
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lowing relation

@T

@r
� 0: �37�

It is due to the fact that the heat ¯ux does not ¯ow

into the core. Namely, the converters core is insu-
lated from the anisotropic layer for not conducting
both electric current and heat ¯ux into core region.

The surface r � Rÿ a introduces adiabatic condition
for heat transfer and condition of isolation for elec-
tric current, respectively.

. the convection phenomenon on the layerÐthe gap
�r � R, x 2 �0, 2p�� boundary leads to

ÿlrr
@T

@ r
� af �Tÿ Tf �, �38�

where the convection coe�cient [8] is assumed to be
independent from the temperature.

For r � Rÿ a, both auxiliary integrals vanish, hence
according to the boundary condition (37) and Eq. (36)

two equalities are satis®ed

c1 � 0 and by � ÿayST � ÿay I
0
PT�kr�

K 0PT�kr� jr�Rÿa : �39�

For r � R, according to the boundary condition (38)
and Eq. (36) it holds

c2 � Tf �

�R
Rÿa

P�r�r dr

aR
�
�R
Rÿa

�r
Rÿa

P�r�r dr

lrrr
dr, �40�

and

ay � ÿlrraÿ1fI 0PT�kR�I1 � K 0PT�kR�I2g � IPT�kR�I1 � KPT�kR�I2
lrraÿ1fI 0PT�kR� ÿ STK 0PT�kR�g � IPT�kR� ÿ STKPT�kR� : �41�

where it was denoted

I1 � I1�R�, I2 � I2�R�: �42�

Having determined Bessel's functions they can be used
in conjunction with a computer programme for the
temperature evaluation. The relations (39), (40) and

(41) enable one to calculate all necessary constants
which appeared in the solution (36). Both temperature
and its radial derivative can be calculated for the

steady-periodic regime for every point of the layer of
the electromechanical converter considered.

The distribution of temperature and heat ¯ux vs
radius and position angle have been shown in Figs. 2±

5. The spatial variation of the temperature T (solid
line) has been compared with Tav temperature distri-
bution (dashed line) calculated as if the power losses

density would not depend on both of the coordinates
(r, a ). The overall values of the power losses are the
same for both the temperature distributions (Fig. 2).

All values have been denoted for SI units. The calcu-
lations with the help of Mathcad software to a toler-
ance of 10ÿ25 have been provided. For controlling the

accuracy of solution obtained the boundary conditions
Eqs. (37) and (38) have been checked. The boundary
condition at r � Rÿ a for zero temperature gradient
(37) with the accuracy at leat 10ÿ14 K mÿ1, and the

condition (38) with relative accuracy 10ÿ8, respectively
(Table 4).

6. Discussion of the results

The calculation has been provided for the material
parameters given in Tables 2 and 3. The isotropic case
could be obtained as a particular case. Assuming, p=0

the currents and magnetic ®eld do not vary with the
position angle, the case of electric current ¯ow is
gained analogously and presented in [1] where the elec-
trical ®eld is exerted in a di�erent way than in this

paper. For such a case the calculations used for
Bessel's function are 0th order for the temperature and
®rst order for the temperature derivative. Since p>0,

the Bessel's function order is positive ( pT>0) and is
either even for isotropic (laa=lrr) rotor or for aniso-
tropic (laa$lrr) rotor uneven.
The ful®lment of boundary conditions (37) and (38)

has been checked for all cases (see Table 4). Hence,
one can state that the solutions are unique. Moreover,

the temperature distribution and its partial radial de-

rivative have been put into Eqs. (19) and (20).

From the results presented, it is apparent that the

temperature varies signi®cantly with the radial coordi-

nate. The maximum of the temperature appears near

the outer surface of the rotor. It is due to the increase

of the losses density vs the radius (see Fig. 2). For

accurate calculations the change of the power losses

volume density should be taken into account (Figs. 3

and 4). If neglected, the temperature of the rotor is

almost invariable. In Fig. 2 the rise of the power losses

density is shown. In the cases shown in Figs. 3 and 4

D. Spal/ek / Int. J. Heat Mass Transfer 42 (1999) 3631±3641 3637



the maximum temperature appears inside the rotor
region. The greater convection coe�cient between the
rotor surface and air-gap, the smaller the radius is at

which the maximum temperature appears in layer. The
appropriate to the Fig. 3 temperature distribution in
Fig. 5 heat ¯ux vs radius has been shown. In Fig. 6

the maximal layer temperature vs anisotropy coe�cient
k=lrr/laa $ (0.75, 1.25) has been presented. The maxi-
mum maximorum thereof appears for lrr<laa. In con-

junction with the rise of radial thermal conductivity
increases the heat ¯ux in radial direction. This leads to

the most intensive heat transfer and decreasing of the
maximal temperature in rotor.

7. Conclusion

For the electromechanical converters considered, the
distribution of the magnetic vector potential, electric
®eld strength and temperature inside the solid and an-

isotropic rotor have been evaluated. Both the stator
and rotor currents as the sources of the losses have

Fig. 3. The layer temperature T [K] distribution (solid line) for real power distribution and Tav for average distribution of power

(dashed line) vs radius r [m] for the generator.

Fig. 4. The layer temperature T [K] distribution (solid line) for real power distribution and Tav for average distribution of power

(dashed line) vs radius r [m] for two-phase machine.
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Table 3

Electromagnetic and thermal parameters for the 2-phase machine

Parameters Electromagnetic Thermal The forced

The gap af=0.3 W mÿ2 Kÿ1,
g=0.0007 m Tf=290 K,

R=0.04 m no=(1/4p ) � 107 H mÿ1 ± ys=50 A, p=1

The layer naa=0.03no, lrr=143 W (m K)ÿ1, s=2p � 5i rad sÿ1

a=0.03 m nrr=0.05no, laa=163 W (m K)ÿ1,
g=1.3 � 107 S mÿ1 cp=135 J (kg K)ÿ1,

r=1.9 � 104 kg (m)ÿ3

The core nFe=0 lInsulation40 ±

Fig. 5. The heat ¯ux density radial component q [W mÿ2] and heat qav calculated for average distribution of power (dashed line) vs

radius r [m] for two-phase machine.

Table 2

Electromagnetic and thermal parameters for the power-station generator

Parameters Electromagnetic Thermal The forced

The gap

R=0.95 m no=(1/4p ) � 107 H mÿ1 ± af=1.3 W mÿ2 Kÿ1,
g=0.012 m Tf=290 K,

ys=1000 A, p=2

The layer

a=0.15 m nrr=0.05no, lrr=90 W (m K)ÿ1, s=2p � 2i rad sÿ1

naa=0.07no, laa=120 W (m K)ÿ1,
g=2 � 106 S mÿ1 cp=50 J (kg K)ÿ1,

r=2.4 � 10ÿ3 kg (m)ÿ3

The core nFe=0 lInsulation40 ±
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been taken into account. The paper extends the work
[1] wherein Barletta and Zanchini have determined

analytically the steady-periodic temperature for two-
layered solid isotropic annular conductor laa=lrr,
naa=nrr=no=(mo)

ÿ1 resistor, crossed by the alternating

current with zero-pair pole p=0 (skin e�ect). In this
paper the anisotropy and rotation of the rotor have
been taken into account. The temperature and heat

¯ux have been determined for the region of anisotropic

machine rotor, where the measurements cannot be
easily provided. The transient and nonlinearity have

been neglected.
The solution in a relatively simple way has been

obtained for the set of known material and geometri-

cal parameters for particular electromechanical con-
verter.
The analytical solution has been determined while

considering the following phenomena:

Fig. 6. The maximal temperature Tmax [K] of anisotropic rotor for generator vs thermal conductivity ratio k=lrr/laa $ (0.75, 1.25)
for laa=120 [W mÿ1 Kÿ1].

Table 4

Boundary conditions (37) and (38) ful®lment

Parameters Electromagnetic Thermal Boundary condition

The gap

R=0.95 m no=(1/4p ) � 107 H mÿ1 Bi=0.01 for r � Rÿ a

g=0.012 m oEog
ÿ1=5.6 � 10ÿ17 j @T@ r j<10ÿ14 K

m

The layer

a=0.15 m nrr=0.05no, lrr=90 W (m K)ÿ1, for r � R

naa=0.07no, laa=120 W (m K)ÿ1, lrr

af �TÿTf �
@T
@ r � 0:999999995

g=2 � 106 S mÿ1 cp=50 J (kg K)ÿ1,
bR=20.18 r=2.4 � 103 kg (m)ÿ3

pB=1.69 kR=173.9

pT=2.31

The core nFe=0 lInsulation40
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1. the rotation of electromechanical converter rotor;

2. two-dimensional temperature distribution;
3. the rotor temperature dependence on time for

steady-periodic state of work;

4. the ¯ow of the currents forced by both the stator
and rotor current;

5. the diagonal anisotropy of material parameters.

The obtained results can easily be used for temperature
and heat ¯ux determination at design process for both

the power-station generators and small induction ma-
chines with anisotropic, conducting rotor. The way of
analysis derived could be incorporated into the list of
the methods useful for evaluation of temperature rise

in electromechanical coverters.

Appendix

There are de®ned boundary conditions of continuity

for:
. the tangential (angular) components at the bound-

ary of the statorÐthe stator windingsÐthe air-gap

�r � R� g � Rg�:

noBda � ÿ 1

Rg

@Ys

@a
�)ad�Rg� pÿ1 ÿ bd�Rg�ÿpÿ1

� Ys=�Rgno�,

. the normal (radial) components at the boundary of

the air-gapÐthe layer �r � R�;
Bdr � Bar�)adR

p � bdR
ÿp � aaIpB�bR� � baKpB�bR�,

. the tangential (angular) components at the boundary
of the air-gapÐthe layer �r � R�:

noBda � naaaBaa�)nopfadR pÿ1 ÿ bdR
ÿpÿ1g

� naabfaaI
0
pB�bR� � baK

0
pB�bR�g,

. the tangential (angular) components at the boundary
of the layerÐthe core r � Rÿ a � Ra:

naaBaa � 0�)aaI
0
pB�bRa� � baK

0
pB�bRa� � 0:

The four conditions derived above enable one to deter-
mine the four constants

aa � Ysnÿ1o fU�Rg� p ÿW�Rg�ÿpgÿ1,

ba � ÿaa

I 0pB�bRa�
K 0pB�bRa� � ÿaaS,

ad � aaU, bd � aaW,

where it was denoted for simpli®cation

U � 0:5�Rÿp�1P� RÿpQ�, W � 0:5�ÿR p�1P� R pQ�,

P � bnaa
pno

fI 0pB�bR� ÿ SK 0pB�bR�g,

Q � IpB�bR� ÿ SKpB�bR�:
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